L ecture 10

Terrestrial infrared radiative processes. Part 3:

Absor ption band models. Curtis-Godson Approximation.

Objectives:

1. Concept of the equivaent width. Limits of the strong and weak lines.

2. Absorption-band models: Regular (Elsasser) band model and Statistical (Goody) band
model.

3. Curtis-Godson Approximation for inhomogeneous path.

Required reading:

LO2: 4.4
Additional/Advanced reading:
G&Y:4.5/4.6

1. Concept of the equivalent width. Limits of the strong and weak lines.

First, let’s consider a homogeneous atmospheric layer (i.e., the spectral absorption
coefficient k,, does not depend on path length).
Recall Lecture 8 where we have defined the spectral transmission function for a band

of awidth Av as
1 1
T (u)=— |exp(-k udy =— |exp(- S (v —v,)u)dv
L (u) Avi p(—k,u) AVA[ p(-SF (Vv - vy)u)
and spectral absor ptance
1
(W) =1-T (u)=—— |1-exp( -k u))dv
A, (u) S (u) MAJV( p( —k,u))

Equivalent width isdefined as

W(u) =AAv = I[l—exp(—k,,u)]dv [10.1]

where W isin units of wavenumber (cm™).



* Theequivaent width isthe width of afully absorbing (A=1) rectangular-shape

line.

A

Spectral Absorptance

. :

Figure 10.1 Schematic illustration of the equivalent width. The dotted rectangular areaiis
equal to the hatched area and represents the total energy absorbed in the line.

» Equivalent width of L orentz profile

Using k, = Sf(v —Vg) and the Lorentz profile of aline, we have

1 Sau/
Av<u)=EAJV(1—exp(—(V_V"O‘;Z’faz}dv 102

Thisintegral can be expressed in term of the Ladendurg and Reiche function, L(x), as
W = AAv = 2 L (X) [10.3]

where x = Su/2maq,
Sisthelineintensity, and u is the absorber amount.



NOTE: The Ladendurg and Reiche function L(x) in Eq.[10.3] is given by the modified
Bessel functions of the first kind of order n: L(x) = xexp(=X)[1,(X) + 1,(X)], where

1,09=173,0%) and J,(9 =" [cos(ng) exp(ix cos(n))de
0

For small x: L(x) islinear with its asymptotic expansion: L(x)= x[1-...]

For large x: L(x) is proportional to a square root of x: L(x) = (2x/m)*¥[1-...]

Case of weak line absorption: either k, or uissmall =>  k,u <<1

Using the asymptotic of L(x) for small x, we have

W ST ST
(u)=——=2maL(x)/Av = 2ta =
Ar(u) Av () 2rmalv Ay
Thus
U
AV(U) = AV- iscaled Linear absorption law. [10.4]

Case of strong line absorption: Su/ 7ta>>1

Using the asymptotic of L(x) for large x, we have

A (u) - W 2rmal (x) [ Av :2710'1/2—X/Av =
Av T
2

=2na.——IAv =2vSua [ Av
T27m1a
Thus
VU a
A|7(u) = ZT is called Square root absorption law. [10.5]




2. Absor ption band modeéls.

Band is aspectral interval of awidth Av which is small enough to utilize a mean value of

the Plank function B (T ) , but large enough so it consists of several absor ption lines.

» Absorption band models are introduced to simplify the computation of the
spectral transmittance. Some generally available radiative transfer codes (such as
MODTRAN) use band models.

NOTE: MODTRAN is amoderate resolution radiative transfer code, which has “fixed-
wavenumber” sampling of 1 cm™ and a nominal resolution of 2 cm™. See

A. Berk, G.P. Anderson, P.K. Acharya, J.H. Chetwynd, L.S. Bernstein, E.P. Shettle,
M.W. Matthew , and S.M. Adler-Golden, MODTRAN4 USER’S MANUAL. Air Force
Research Laboratory. 2000.

Let’sconsider a band with several lines. Two main cases can be identified:
1) lines haveregular positions

2) lines have random positions.

1l

Two main types of band models: regular band model and random band models.

Regular Elsasser band model_consists of an infinite array of Lorentz lines of equal

intensity, spaced at equal intervals.

Example: Thistype of bandsis similar to P and Q branches of linear molecules. For

example, the spectrum of N,O in 7.78 um band; the spectrum of CO,in 15 pum band.

The absor ption coefficient of the Elsasser bandsis

> S a
k,= > = [10.6]

= m (v-nd)’+a’

where  isthe line spacing (i.e., the distance in wavenumber domain (cm™) between the

centers of two nearest lines).



Using Eq.[10.6} one can calculate the spectral absorptance as (see derivation in L02
ppl139-141)

A [10.7]

v

= ef (— n;au J

_ 2 2 .
where erf (x) = Tn IeXp(—X )dX . Values of erf(x) are available from standard
T o

mathematical tables.

Principle of statistical (random) models:

Many spectral bands have random line positions. To approximate this type of bands,

various statistical models have been devel oped.

Example: H,O 6.3 um vibrational-rotational band and H,O rotational band are

characterized by random line positions.

Assumptions: n randomly spaced lines with the mean distance , so that Av=nd ; lines

are independent and have identical shapes, probability density of strength of i’th lineis
p(S). Different p(S) give different models, for instance, Goody and Makmus.

Strategy: derive mean transmission by multiplying transmission of each line at particul ar

v, and aso integrating over probability distributions of line positions v; and line strength

S for eachline.

T, = (M) jdv J;dvn Oj p(S,) exp(-uS, f (v -V,,))dS,...

p(S,)exp(-uS,f (v -v,,))dS, =

:_‘l A— j dv. j p(S)exp(-uS, (v -v,,))dS



NOTE: Above equation usesthat if linesin aband are uncorrel ated, the multiplication

law (see Lecture 8) works for average transmittance:

T|7,1,2 = T|7,1T|7,2

Since in the above equation all integral alike, we have

T, ={ dv [ p(S)exp(-uS (v)dS}" =
@ g1
1 ® [10.8]
={1-—= [ dv [ p(S)[1-exp(-uSt (v)dS}"

AVAV 0

The mean equivalent width may be defined as
W = [ p(S) [ [1-exp(-us (v)]dvdS 109

0 Av

Recalling that Av=nd , Eq.[10.8] can be rewritten in terms of the mean equivalent

width giving the mean transmission as

1 (W)
T =1-=| &
: ( n(dn [10.10]

. X
Since lIM _.., (1_H)n_ > exXp( —X) , we have

W
T, = exp( —7) [10.11]

NOTE: Singlelinetransmissionis 1-W/Av, but for many random lines it is exponential

in the mean equivalent width.



Statistical (Goody) band model:
Consider aband consisting of randomly distributed Lorentz lines.

Assuming that the probability distribution of intensities is the Poisson distribution
p(S) = S exp(-S/S) [10.12]

wherethe S in the mean intensi ty.

S= mj F(S)dS

For the Lorentz profile with the mean half-width a, the spectral transmittance can be
expressed as

— — <12
Su Su
T, =X ‘?[“%} [10.13]

Thus, Eq.[10.13] gives the mean spectral transmittance for the Goody random model asa
S

and .
arr

function of path length, u, and two parameters

| 0

Malkmus model: (has a higher probability of weak lines)

assumes that the probability distribution of intensitiesis
p(S) = St exp(-S/S)
and, for a Lorentz line shape, the mean transmittance is

— 1/2
na 4Su
T, =exp| - 55 (1+ ﬁ) -1 [10.14]




Weak line limit:

For —Y << 1. Eq[10.13] gives
— ,Eq[10.13] g

T, =exp (— S;_uj [10.15]

Strong line limit:

Su ,
For P >> 1, Eqgs.[10.13] and [10.14] give

\ maSu ]

5 [10.16]

T, = exp[—

3. Curtis-Godson Approximation for inhomogeneous path.

All discussion above was for homogeneous path because band parameters are for one
pressure and temperature. In real atmosphere of varying T and P some adjustments of the

band models are needed to account for inhomogeneous path when

r= [k, (P(). T (W)du

Strategy: reduce the radiative transfer problem to that of homogeneous path with some
sort of averaged values of u*, T* and p*, so that optical depth can be computed
accurately.

One-parameter scaling approximation:
Find an equivalent path u* at fixed reference T, and py that resultsin the band model
having the correct transmission.

Match optical depth for line wings (centers saturated):

SMa(p.T) _ ¢ USTa(pT)
T Y R 2 T




Re-writing the half-width, a, as

a(P.T)= a(pr,mPi(TT—fj

* — p n
u=|—-|= ds
UI( 0 )( T ) Pa [10.17]

, =k, (p,. T )u’ [10.18]

We have

and thus

Two-parameter scaling approximation (Curtis-Godson approximation):
More accurate band transmission is obtained with the two-parameter approximation.
Want to find optical depth as

r= [k, (p.T)du =k, (p", T )u [1019]

Using Lorentz profile, we have

-~

(1= 57,y S @

i n(V_Vo,i)z"'C?iz

and, thus, two-adjusted parameter S add .
They can be introduced as

S = [S(T)du/u
0

a= uI§(T)a(p,T)du/ li[§(T)du



